碳氮磷交互作用对高浓度氨氮鸡粪沼液 培养小球藻的影响

贾侑臻¹²³,卢海凤^{123*},董泰丽⁴,孙颖财⁴,李保明¹²³,童勤¹²³,胡国娜¹²³,张东明⁴,韩挺¹²³ (1.中国农业大学水利与土木工程学院,北京 100083; 2.农业农村部设施农业工程重点实验室,北京 100083; 3.北京市畜禽健康养殖环境工程技术中心,北京 100083; 4.山东民和生物科技股份有限公司,山东 蓬莱 265600)

摘 要: 为降低鸡粪沼液对环境污染的同时寻求资源的再生利用,以鸡粪沼液膜过滤出水作为小球藻培养基,研究了二氧化碳(CO_2)体积浓度($0.03\% \sim 10\%$)及氮磷比($N/P = 10 \sim 260$)对小球藻生物量与色素累积,以及对氨氮、磷酸盐去除的影响。试验结果表明:在 CO_2 体积浓度为7.5%、N/P = 80的条件下,小球藻干重最高可达3.38 g·L⁻¹,叶绿素(Chlorophyl,Chl a + b)浓度为30.78 mg·L⁻¹,氨氮去除率为68.6%。CO₂浓度对小球藻累积生物量的影响更大,培养20 d 后,额外补偿CO₂的各处理组中磷酸盐去除率均 > 98%。研究为鸡粪沼液膜过滤出水培养 微藻的工业化应用奠定了基础。

关键词:小球藻;氮磷比;二氧化碳;鸡粪沼液

中图分类号: S216.4; X712 文献标志码: A 文章编号: 1000 - 1166(2023) 02 - 0029 - 10 DOI: 10.20022/j. enki. 1000 - 1166. 2023020029

Interaction Effects of Carbon , Nitrogen and Phosphorus on *Chlorella* Cultivation of by Chicken Manure Biogas Slurry with High Ammonium Concentration / JIA Youzhen^{1,2,3}, LU Haifeng^{1,2,3*}, DONG Taili⁴, SUN Yingcai⁴, LI Baoming^{1,2,3}, TONG Qin^{1,2,3}, HU Guona^{1,2,3}, ZHANG Dongming⁴, HAN Ting^{1,2,3}/(1. College of Water Resources and Civil Engineering , China Agricultural University , Beijing 100083, China; 2. Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs of the PRC, Beijing 100083, China; 3. Beijing Engineering Research Center for Livestock Poultry Healthy Environment, Beijing 100083, China; 4. Shandong Minhe Biotechnology Co Ltd, Penglai 265600, China)

Abstract: In order to reduce the pollution of chicken manure biogas slurry to the environment and reuse resource, the wastewater from chicken manure anaerobic fermentation biogas slurry membrane filtration was used as a medium for *Chlo-rella* cultivation. The carbon dioxide volume percentage (CO₂) ($0.03\% \sim 10\%$) and nitrogen-to-phosphorus ratio (N/P = 10 ~ 260) on the dry cell weight ad pigments concentration of *Chlorella*, and the ammonium and phosphate removal were investigated. Results show that with 7.5% CO₂ and N/P = 80, the dry cell weight and total chlorophyll (Chlorophyll, Chl a + b) concentration of *Chlorella* reached 3.38 g·L⁻¹ and 30.78 mg·L⁻¹, respectively. The ammonium removal reached 68.6%. The CO₂ volume percentage has a greater impact on biomass accumulation, especially after 20 days' cultivation , with additional CO₂ supplementation , phosphate removal in each group was >98%. This work provides the foundation for the industrial application of microalgae cultivation in chicken manure biogas slurry.

Key words: Chlorella; nitrogen-to-phosphorus ratio; carbon dioxide; chicken manure biogas slurry

微藻具有较高的生长速度与良好的环境适应 性,是一种公认的可持续的生物质,广泛应用于食 品、制药、化妆品、饲料、能源等行业^[1-3]。但高昂的 生产成本在一定程度上限制了微藻生物技术的广泛 应用。采用废水培养微藻则提供了切实有效的思路 和方法。自 20 世纪 50 年代 Oswald 提出微藻净化 水质的理念以来^[4],微藻处理废水一直备受关注: 废水中氮磷等无机盐可以作为微藻的养料,同时微

通信作者: 卢海凤, E-mail: haifenglu@ cau. edu. cn

收稿日期: 2022-07-24 修回日期: 2022-09-21

项目来源:企业横向委托课题

作者简介: 贾侑臻(1997-) 男 汉 四川南充人 硕士 研究方向为废水微藻资源化处理 ,E-mail: youzjia@163.com

藻可吸附或降解废水中的重金属、抗生素等污染物, 降低培养成本的同时实现废水的净化;此外,微藻生 长周期短、光合作用效率高,其固碳效率是一般陆生 植物的10~50倍^[5]。已有研究表明,微藻通过光合 作用每固定1800克CO₂,可生产1000克生物 质^[6-7]。因此,利用微藻处理废水不仅能够实现其 净化,还能获取微藻生物质用于下游高价值产品开 发,进而形成基于微藻废水处理的新型绿色产业链。 而微藻废水处理资源化效率与废水中的养分供应关 系密切,其中碳氮磷浓度及比例对微藻对废水中养 分的吸收利用,以及微藻自身的生长、生化组分影响 较大^[8]。

CO₂的供应量对微藻产量及藻体组成成分影响 较大。CO。供应通常以其与空气混合的百分比作为 计量单位。CO₂的通入比例亦因藻种、培养基中氮 磷组分浓度等不同而异。通常 0.03%~15% 浓度 的 CO₂ 对螺旋藻、小球藻等生长有利; 另外 较低的 CO₂ 浓度更利于小球藻油脂积累^[11]。例如 ,Fan^[9] 等研究发现随着 CO2 浓度(0.03%~100%) 升高, 蛋白核小球藻生物量先增加后降低,在5%处取得 最高值4.3 g•L⁻¹,且获得了最高的油脂累积量。另 外 废水中的不同营养条件下 不同藻类生长的最佳 CO,供应量也有所不同。例如,刘锦上^[10]等在 0.03%~15%CO,浓度范围内利用酒精废水培养钝 顶螺旋藻,在2.5%CO2浓度下取得最高生物量 1.62 g•L⁻¹。Liu^[11]等将生活污水作为小球藻培养 基 探究 0.03%~20% CO2 浓度的影响,结果发现 在 10% CO₂ 浓度下取得最高生物量 1.12 g·L⁻¹。 同时,环境中氮元素的存在形态与浓度,对微藻生 长、代谢甚至是 CO_2 的利用产生一定的影响^[12]。例 如 Li^[13] 等研究发现,当 NH₄⁺-N 与 NO₃⁻N 比例为 1:4时 螺旋藻获得最高 CO, 利用率(40.45%)。此 外,适量的 CO₂ 浓度可降低溶液 pH 值,降低高氨氮 溶液内游离氨含量,缓解氨对微藻的毒性作用^[14]。 磷是限制微藻生产力的主要元素。环境中各种养分 的可获得性影响着微藻生长代谢^[15-16],而氮磷摩尔 比(N/P) 为藻类细胞吸收养分的能力提供一个综合 的衡量标准^[17-18],Nadiah^[19]等研究以 F/2 培养基 作为基础配方,设置了 5:1~120:1的 N/P 梯度,研 究发现 20:1的 N/P 有利于微藻的生长和蛋白质合 成,N/P 为 5:1和 120:1的情况下微藻碳含量较高。 蔡敬^[20]等通过向猪场废水中添加 NaH₂PO₄ 的方式 调节 N/P,研究发现当 N/P 为 64:1时可获得最高生 物量(0.49 g•L⁻¹) 和氨氮去除率(74.94%);而在 高浓度氨氮条件下溶液的磷浓度易随氮磷比(N/P) 发生较大变化,甚至引入新的环境污染问题,降低了 藻类培养的可持续性^[21]。

目前,有关 CO₂ 浓度和 N/P 对在鸡粪沼液培养 的小球藻生长特性和养分去除能力的综合影响的信 息有限。基于以上背景,本研究利用高氨氮浓度的 鸡粪沼液,探究不同 N/P 和 CO₂ 浓度对小球藻生 长、养分去除、色素合成的影响和交互作用。

- 1 材料与方法
- 1.1 藻种

研究所用小球藻(*Chlorella vulgaris*)从污水中 分离纯化得到。其培养基为 BG-11 培养基(N/P = 45:1) 培养温度为 25℃ ,光照强度 3000 lux ,光暗周 期为 12 h/光 12 h 暗。

1.2 废水特性

研究所采用的废水为山东某大型养鸡场沼气工 程鸡粪厌氧发酵沼液经多级膜组合工艺制作水溶肥 后的出水,其工艺流程图如图1所示。本试验所用 沼液为经反渗透膜(RO膜)过滤后所得清液(RO清 液)。

图1 试验废水来源

RO 清液中氨氮浓度为 367 mg•L⁻¹,磷酸盐浓 度为 3.1 mg•L⁻¹,COD 浓度为 104 mg•L⁻¹,溶液 pH 值为 9.8,使用前需调节溶液 pH 值,使其维持在 7.0~7.5。 1.3 试验方法

采用 1.5 L 高硼硅玻璃鼓泡柱状反应器进行小 球藻培养。由于该废水中磷浓度较低,不能满足小 球藻生长,因此采用向废水中添加磷酸二氢钾,以改 变废水 N/P 为微藻生长提供合适的营养水平。其中 N/P 共设置 5 个水平分,别为 10、45、80、115、260。采用纯 CO₂ 与空气混合(v/v)的方式设置 CO₂ 浓度,设置 5 个水平,分别为 0.03%、2.5%、5%、7.5%、10%。随后开展两因素五水平的全面析因实验。

处理温度为 24℃ ±2℃。采用 LED 灯板作为光 源,光照强度为 8000 lx,光暗周期为 12 h 光/12 h 暗。初始接种量为 220 mg•L⁻¹,气体经 0.22 μm 滤 膜过滤后于反应器底部持续通气,通气比为 0.25 vvm。每隔 2 天定时取样,测定培养液中氨氮、磷酸 盐浓度。培养周期为 20 d。

1.4 检测分析方法

1.4.1 生物量的测定

采用光密度法测定小球藻细胞生物量(X, mg•L⁻¹),得出小球藻生物量与 OD_{680} 值之间的线性关系见公式(1):

 X = 254.43 × OD₆₈₀ - 3.55(R² = 0.995) (1)

 1.4.2
 比生长速率及日生产率

选择比生长速率 μ(d⁻¹)和日生产率 P (mg•L⁻¹d⁻¹)评价小球藻的生长情况,分别按照公 式(2)和(3)计算:

$$\mu = \frac{\ln X_1 - \ln X_0}{t_1 - t_0} \tag{2}$$

$$P = \frac{X_1 - X_0}{t_1 - t_0} \tag{3}$$

式中: t_0 和 t_1 分别为第 0 天和第 1 天 X_0 和 X_1 分别为 t_0 和 t_1 天对应的干重 $mg \cdot L^{-1}$ 。

1.4.3 水质指标

取适量藻液置于 10 mL 离心管内 6000 rpm 离 心 10 min 在将上层水样用 0.45 μ m 孔径水系滤膜 过滤备用。根据第四版《水和废水监测分析方 法》^[22],采用纳氏试剂光度法测定溶液中氨氮 (NH₄⁺-N)浓度;钼锑抗分光光度法测定溶液中正磷 酸盐(PO₄³⁻-P)浓度。不同水质指标去除率 (RE %)以及日平均去除效率(ARR ,mg•L⁻¹d⁻¹) 分别按照公式(4)和(5)如下:

$$RE = (1 - \frac{C_1}{C_0}) \times 100\%$$
 (4)

$$ARR = \frac{C_0 - C_1}{t_1 - t_0}$$
(5)

式中: C_0 为初始浓度 ,mg•L⁻¹; C_1 为时间 t_1 (d) 时的浓度 ,mg•L⁻¹。 按照公式(6) 计算微藻对溶液氮磷的吸收比例 吸收氮磷比(N/P uptake Ratio):

$$N/P_{UP} = \frac{(C_{N0} - C_{N1}) \times 31}{(C_{P0} - C_{P1}) \times 14}$$
(6)

式中: 14、31 分别为氮、磷元素摩尔质量, C_{N0} 、 C_{P0} 、 C_{N1} 、 C_{P1} 分别指 t_0 和 t_1 时刻的氮磷浓度, mg•L⁻¹。

1.4.4 色素测定

光合色素叶绿素 a(Chl a)、叶绿素 b(Chl b)、 类胡罗卜素(Car)的测定依据《植物生理生化实验 原理和技术》(第2版)^[23]。取一定量样品(VmL) 于 6000 rpm 下离心 10 min ,除去上清液 ,用蒸馏水 冲洗 ,再次离心去除上清液 ,加入等量 95% 乙醇(V mL)并在 4℃下静置萃取至藻体呈白色 ,置于紫外-可见光分光光度计内 ,以 95% 乙醇标定 ,分别测定 波长 665 nm、649 nm 和 470 nm 的吸光度值 ,按照公 式(7)、(8)、(9)和(10)分别计算叶绿 a、叶绿素 b、 类胡罗卜素和总叶绿素(Chl T)浓度 ,计算公式如 下:

$$Chl \ a = 13.95 \times A665 - 6.88 \times A649$$
(7)

$$Chl \ b = 24.96 \times A649 - 7.32 \times A665 \tag{8}$$

 $Car = (1000 \times A470 - 2.05 \times Chl a -$

114.
$$8 \times Chl \ b) /245$$
 (9)

$$Chl \ T = Chl \ a + Chl \ b \tag{10}$$

式中: *Chl a* 表示叶绿素 a 的浓度 ,mg•L⁻¹; *Chl b* 表示叶绿素 *b* 的浓度 ,mg•L⁻¹; *Car* 表示类胡萝卜 素的浓度 ,mg•L⁻¹; *Chl T* 表示总叶绿素浓度 ,mg•L⁻¹。 A665、A649、A470 分别表示波长为 665 nm、649 nm 和 470 nm 时的吸光度值。

1.4.5 动力学

对微藻的生长采用修正的 Gompertz 模型进行 拟合,方程如下:

$$X = Ae^{-e^{-k(t-t_c)}}$$
(11)

$$\mu_{max} = \frac{A \times k}{e}; \quad \lambda = t_c - \frac{1}{k} \tag{12}$$

式中: *X* 为 t 时刻生物量 ,mg•L⁻¹; *A* 为最高生物量 ,mg•L⁻¹; *t*_c 为达到相对最高生长速率所需时间 ,d; *k* 为 t_c 时刻的相对生长速率 ,d⁻¹; μ_{max} 为最大比生长速率 ,d⁻¹; λ 为迟滞期 ,d。

微藻对于氮磷的养分去除采用一级动力学进行 拟合 其模型为:

$$ln(\frac{C_{\iota}}{C_0}) = -kt + a \tag{13}$$

式中: C_t 为时间 t 时刻的氮磷浓度 ,mg•L⁻¹; C_0 为初始氮磷浓度 ,mg•L⁻¹; t 为时间 ,d; k 为反应 速率常数(k > 0) ,d⁻¹; a 为常数。

1.4.6 数据处理

试验结果以平均值 ± 标准差形式呈现。使用 Origin2018 和 Excel2016 进行数据分析及制表绘图。

2 结果与分析

2.1 微藻生物量累积与生长特性

不同培养条件下小球藻的生长情况及生长曲线 拟合见图 2~6 所示。以高氨氮含量的 RO 清液作 为培养基,小球藻不仅能够快速适应废水环境,具有 较短的迟滞期,且能够借助废水中提供的养分以获 取较高生物量。由图 2~图 6 可知,在 CO₂ 浓度为 7.5%、氮磷 = 80 时,小球藻可取得最高生物量,为 3.38 g•L⁻¹。Kayla^[24]利用超滤后的食品垃圾厌氧 消化液培养4种微藻,最高生物量为1.096 g•L⁻¹。 本研究与上述研究结果相比,所使用的废水中氨氮 浓度更高,获得的生物量也较高,说明 RO 清液是培 养小球藻的较好原料。

图2~图6表明不同CO,浓度下获得的小球 藻最高生物量时,最佳 N/P 不同: 当 CO₂ 浓度为 2.5%、5.0%、7.5%时最佳 N/P为80;而当 CO,浓 度为 0.03% 和 10% 时 小球藻的最高浓度则分别在 N/P=45 与260 获得。另外,各组生物量整体呈现 出随 CO₂ 浓度增加而先增加后降低的趋势。当 CO₂ 浓度为 7.5% 时,N/P 为 45、80、115 组的生物量分 别可以达到 3.23、3.38、3.38 g·L⁻¹,分别比 2.5% CO₂ 组(微藻培养常用 CO₂ 浓度组)提高了 40.43%、20.28%和43.22%。而当进一步提升CO, 浓度至 10% 后,同一 N/P 组相比,小球藻生长优势 不显著。此外,由图 $2 \sim 6$ 和表 1 可知,在同一 CO_2 浓度下 不同 N/P 之间的生长速率(斜率) 与比生长 速率基本一致,且同样表现出随 CO₂ 浓度提高呈现 出而先升高后降低的变化趋势; CO_2 浓度 = 7.5% 时 小球藻比生长速率与日生产率几乎获得最高值, 分别为 0.33 ~ 0.37 d⁻¹ 与 73 ~ 158 mg•L⁻¹d⁻¹,比 CO2 = 0.03% 组对应数据分别提高了 33% ~ 56.8% 与20%~59.2%。

上述研究结果与前人的研究结果相似^[25-26],即 低浓度 CO₂ 不能满足小球藻的生长需要,成为主要 的限制因素,当 CO₂ 浓度升高,增加了溶液中游离 的 CO₂ 以及无机碳浓度可以促进小球藻生长。此 外微藻活跃的光合作用会导致溶液 pH 值逐渐增高。向小球藻培养液内通入适宜浓度的 CO₂ 气体

小球藻生长曲线及其拟合曲线

不仅能够提供充足的碳源,同时可以使得溶液 pH 值维持在小球藻适宜生长的范围^[11],使得各种关键 酶如核酮糖-1 5-二磷酸羧化酶/加氧酶(Ribulose-1, 5-bisphosphate carboxylase/oxygenase,Rubisco)、碳酸 酐酶(Carbonic Anhydrase,CA)等保持较高生物活 性,促进生物量积累;而进一步提升 CO₂ 浓度将导 致培养基酸化,抑制小球藻的生长。

不同 N/P 使得小球藻生长的最佳 CO₂ 浓度也 有所不同。当 CO₂ 浓度低于 7.5% 时,N/P 对小球 藻生物量的影响整体呈现出先增加后降低的趋势。 当 N/P 为 45、80、115 时,均在 CO₂ 浓度 7.5% 处取 得最高生物量; 而 N/P 为 10 和 260 时,则均在 10% 处取得最高值。高 N/P 意味着相对较低的磷浓度, 进而影响小球藻生长。此条件下,小球藻可以提高 某些酶活性以破坏细胞内含磷分子结构,进而补偿 其磷需求。如磷饥饿条件下微藻胞内磷酸二酯酶活 性升高,破坏核酸和磷脂等化合物中的磷酸二酯 键^[27],导致脂质的积累和叶绿体及其膜器(类囊体 系统)的减少,以至于影响微藻光合作用,限制微藻 的生长^[28];而提高光照强度以及 CO₂ 浓度有助于改 善这一情况^[29],故而在本研究中,当 N/P = 260 时, 10%的 CO₂ 浓度更有利于生物量累积。当 N/P 较 低即环境中磷浓度过高时,同样不利于微藻生长。 Xing^[16]等研究结果表明,当磷浓度大 6 mg·L⁻¹时, 微藻的生长便开始受到抑制。若提高 CO₂ 的浓度 则 可增加碳源,有可能会通过改善系统中 C/N/P 比,促 进微藻生长。本研究中 N/P = 10 和 45 组对应磷浓度 分别可达 78.29 ± 3.33 、12.25 ± 1.27 mg·L⁻¹ 此时 10% 的 CO₂ 体积浓度下获得了最高生物量。

修正的 Gompertz 模型已被广泛应用于微藻生物量预测^[30],由表1可以看出不同条件下 Gompertz 模型参数的变化,各拟合曲线 R²均大于0.98,最高 生物量与实际值相吻合,拟合最大比生长速率同样 表现出随 CO₂ 浓度升高呈现先提高后降低的趋势, 但整体低于实际值。而由于各处理组的小球藻在生 长过程中并没有表现出明显的迟滞期,使得模型拟 合所得 λ 值均为负数,因此也提示需要进一步优化 该模型。

2.2 废水中氮磷去除率

由图 7 可知,培养 20 d 后,除不额外添加 CO₂ 组外 CO, 浓度为 7.5% ,N/P = 80 时,可获得最高 氨氮去除率(68.6%)。Jiang^[31]等使用氨氮作为唯 一氮源的 BG-11 培养基培养小球藻,设置 5 个氨氮 浓度(50、120、240、360、500 mg·L⁻¹) 和 5 个 pH 值 (6.5、7.5、8.5、9.5) 水平,结果表明,在氨氮浓度为 360 mg•L⁻¹、pH 值为 7.5 时,氨氮最高除率仅为 72.7% ±2.16% ,与本研究结果相似。同一 CO, 浓 度下氨氮浓度的变化趋势与生物量变化一致 表明 去除的氨氮极有可能被小球藻吸收利用 转化为生 物质而固定下来。而不额外添加 CO₂ (CO₂ = 0.03%) 处理组中氨氮去除率(87.62% ±3.68%) 整体上要显著高于额外添加 CO₂ 组。微藻光合作 用对 CO₂ 的固定使得溶液中 OH⁻ 累积,导致 pH 值 逐渐上升;在没有额外的 CO。供应下 ,pH 值会持续 升高 RO 清液中氨态氮在碱性条件下可转化为游 离 NH, 此时氨氮的去除实际上为微藻生物量同化 与游离 NH₃ 逸散共同所致^[31]。

CO ₂	N/P	日生产率	$\frac{\mu_{max}}{(d^{-1})}$	SGompertz 模型参数						
(% v/v)		(mg•L ⁻¹ d ⁻¹)		A/(g•L ⁻¹)	$t_{\rm e}$ / d	k/(d ⁻¹)	μ_{max} /(d ⁻¹)	$\lambda/{\rm d}$	\mathbb{R}^2	
0.03	10	41	0.22	1.03	0.91	0.33	0.13	-2.12	0.987	
	45	89	0.20	2.86	8.64	0.09	0.09	-2.47	0.988	
	80	77	0.19	2.24	6.68	0.09	0.07	-4.43	0.990	
	115	64	0.18	1.61	3.10	0.13	0.08	-4.59	0.983	
	260	80	0.16	2.33	6.92	0.09	0.08	-4.19	0.993	
2.5	10	112	0.25	2.49	4.51	0.18	0.16	-1.05	0.996	
	45	103	0.28	2.35	4.29	0.18	0.16	-1.27	0.996	
	80	129	0.31	2.87	4.71	0.18	0.19	-0.85	0.997	
	115	107	0.28	2.49	4.75	0.15	0.14	-1.92	0.992	
	260	106	0.28	2.38	4.02	0.17	0.15	-1.86	0.985	
5	10	101	0.31	2.17	3.14	0.23	0.18	-1.21	0.993	
	45	88	0.27	1.90	2.80	0.23	0.16	-1.55	0.990	
	80	129	0.37	2.80	4.39	0.18	0.19	-1.17	0.989	
	115	77	0.27	1.72	2.35	0.27	0.17	-1.35	0.996	
	260	109	0.31	2.40	3.84	0.18	0.16	-1.72	0.990	
7.5	10	73	0.33	1.66	1.81	0.36	0.22	-0.97	0.992	
	45	153	0.34	3.69	6.11	0.13	0.18	-1.58	0.995	
	80	158	0.37	3.73	5.72	0.14	0.19	-1.42	0.993	
	115	157	0.34	3.42	5.08	0.15	0.19	-1.59	0.988	
	260	100	0.37	2.21	2.92	0.24	0.20	-1.25	0.993	
10	10	130	0.36	2.70	3.79	0.19	0.19	-1.47	0.989	
	45	133	0.33	3.02	5.40	0.14	0.16	-1.74	0.988	
	80	83	0.29	1.92	3.03	0.20	0.14	-1.97	0.990	
	115	95	0.29	2.29	4.36	0.15	0.13	-2.31	0.993	
	260	140	0.27	3.39	6.46	0.13	0.16	-1.23	0.990	

图 7 20 d 时不同 CO_2 及 N/P 条件下氨氮去除率

另外,由图 8 可知,额外添加 CO₂ 的各处理组 基本可将溶液中的磷全部去除(>98%),而在没有 额外添加 CO₂ 的处理组中,磷的去除率仍然 85%。微藻对废水中磷的直接去除能力不仅与磷浓 度有关,还与 N/P 比有关^[28]。由表 2 可知,微藻能 根据溶液的 N/P 调节自身氮磷吸收比例。本研究 中,各条件下小球藻对氨氮的吸收速率相差不大,而 在低 N/P(高磷浓度,N/P=10)下,小球藻对废水中 磷的吸收速率最高可以达到 $6.0 \text{ mg} \cdot \text{L}^{-1} \text{d}^{-1}$,高 N/ P 比(低磷浓度,N/P=260)下,磷最高吸收速率仅 为 $0.6 \text{ mg} \cdot \text{L}^{-1} \text{d}^{-1}$ 。这是因为在氮充足的情况下, 微藻主要通过干预磷的吸收来调节比例^[32],同时小

球藻可以通过 "奢侈吸收" 将溶液中多余的磷储存 于体内。此外, Hu^[33] 等持续向培养基种添加磷, 使 得栅藻在高磷浓度下生长,发现藻细胞可持续吸收 磷,但对生物量的生产力并没有刺激作用。 Taufikurahman^[34] 等利用奶牛粪便厌氧消化液 (PO_4^-P : 26.72 mg·L⁻¹, NH_4^+ -N: 4.48 mg·L⁻¹) 培 养小球藻, 最终溶液中 PO_4^-P 与 NH_4^+ -N 去除率分 别为 45.95% 与 78.24%。

2.3 色素浓度

微藻色素具有较高的应用价值 具有抗氧化、预 防早期动脉粥样硬化、增强免疫力、抗病毒等功效, 可应用于食品、医药和化妆品等行业^[2-3]。图9和 10 为小球藻在不同条件下,叶绿素 a、叶绿素 b、类 胡罗卜素的浓度。结果表明、最终小球藻在 CO, 浓 度为 7.5% N/P = 80 的条件下 获得最高总叶绿素 浓度,为30.78 mg•L⁻¹ 其中,叶绿素a、叶绿素b、类 胡罗卜素的浓度分别为 22.73、8.05 与 8.19 $mg \cdot L^{-1}$; 较之培养小球藻的常用条件(即 CO₂ 浓度 为 2.5% N/P = 45) 上述 3 种色素浓度分别对应高 出 22. 26%、23. 98%、19. 05%。本研究中,各处理 组的叶绿素变化趋势与生物量相似,因此部分研究 中也将叶绿素作为反应生物量的指标,但这在一定 程度会受氮磷浓度的影响 即低磷胁迫下微藻细胞 分裂会受到抑制 导致光合作用下调、蛋白质和叶绿 素合成受限。王昭玉^[35]等探究了在磷限制的条件 下7种海洋微藻光系统Ⅱ的最大光化学量子产量 (F_{L}/F_{m}) 变化情况。研究发现、缺磷条件下 7 株海 洋微藻 F_v/F_m 均显著下降,随着限制性营养盐的重 新添加 ,各微藻的 F_{v}/F_{m} 在 24 h 之内均明显升高(p<0.05) ,18 h~72 h 之内恢复到营养盐充足时的水 平。Rocha^[36]等评估了磷有效性对纤细月牙藻生化 成分的影响 研究发现细胞干重、叶绿素、碳水化合 物、脂质等均随磷浓度降低而降低。本研究中 CO, 浓度 7.5%、N/P = 115 组生物量较高,但由于磷浓 度较低 致使总叶绿素、类胡罗卜素浓度比 N/P=45 和80两组分别低22.86%、30.43%和23.13%、 24.91% (*p* < 0.05)。Taufikurahman^[34] 等利用奶牛 粪便厌氧消化液培养小球藻 ,最终获得的叶绿素 a、 叶绿素 b 含量仅为 34.62、9.82 μg•mL⁻¹。与之相 较 利用鸡粪沼液膜过滤出水作为小球藻培养基可 获取更高的色素浓度。

2.4 动力学

一级动力学模型广泛应用于微藻对污染物去除的预测^[31,37-38]。在本研究中运用一级动力学模型, 结合所测得的氨氮、磷浓度实验数据,用于描述废水 中氮磷元素去除情况。由表 3 可知,小球藻对废水 中氨氮(R² 0.92~0.98)、磷(R² 0.77~0.99)的去 除符合一级动力学,模型中的k值反应了小球藻的 对氮磷等元素去除的反应速率。与前期观察到的结 果相似,额外添加 CO₂的各处理组之间k值差异不 显著,这是因为微藻对氨氮的去除主要受氨氮浓度 的影响,即反应速率随氨氮浓度的增加而降低^[31]。 而磷去除反应速率则与 N/P 呈现出了明显的相关 性,即其随 N/P 升高而提高,这要是由于 N/P 的增 加,造成了溶液磷浓度降低,从而加速了微藻对磷的 吸收^[39](见表 2)。

衣之 废小中颈鳞云际动力子模型										
$\frac{\mathrm{CO}_2}{\%}$	废水 N/P	吸收 N/P	ARR-N	ARR-P -				磷去除动力学		
					k	а	R ²	k	а	\mathbb{R}^2
0.03	10	8	22.3	6.0	0.09	0.06	0.97	0.11	—	0.96
	45	32	23.5	1.6	0.11	0.17	0.95	0.15	-0.03	0.94
	80	34	21.4	1.1	0.10	0.13	0.97	0.20	0.08	0.99
	115	43	22.2	1.0	0.11	0.21	0.92	0.15	-0.26	0.79
	260	74	22.3	0.5	0.12	0.24	0.92	0.50	0.35	0.89
2.5	10	8	20.2	5.7	0.06	-0.03	0.95	0.22	0.46	0.94
	45	13	16.4	2.6	0.05	-0.02	0.97	0.28	-0.10	0.96
	80	49	19.3	1.4	0.05	-0.03	0.96	0.36	0.32	0.91
	115	30	15.7	1.2	0.05	_	0.98	0.51	0.33	0.98
	260	70	18.4	0.6	0.05	—	0.96	0.50	0.25	0.95
5	10	7	18.8	5.7	0.06	-0.04	0.97	0.23	0.44	0.94
	45	17	15.4	2.1	0.04	-0.05	0.97	0.27	0.07	0.96
	80	35	16.3	1.5	0.05	-0.01	0.99	0.24	-0.06	0.90
	115	27	15.9	1.2	0.04	-0.02	0.95	0.47	0.48	0.95
	260	69	14.5	0.5	0.05	—	0.97	0.49	0.08	0.97
7.5	10	8	19.7	5.6	0.05	-0.04	0.95	0.16	0.24	0.98
	45	21	17.8	1.9	0.05	-0.06	0.94	0.30	-0.13	0.91
	80	31	20.4	1.6	0.06	-0.04	0.96	0.48	0.48	0.91
	115	31	17.8	1.1	0.05	-0.02	0.96	0.40	0.23	0.98
	260	65	16.0	0.5	0.04	-0.02	0.97	0.45	-0.06	0.97
10	10	7	18.2	5.6	0.05	-0.05	0.96	0.23	0.46	0.94
	45	14	16.7	2.4	0.04	-0.07	0.95	0.29	0.10	0.95
	80	23	15.7	1.4	0.04	-0.05	0.96	0.27	0.07	0.94
	115	30	15.8	1.1	0.04	-0.02	0.97	0.27	-0.03	0.91
	260	69	12.8	0.5	0.05	0.01	0.98	0.68	0.37	0.77

表2 废水中氮磷去除动力学模型

3 结论

(1)采用鸡粪沼液膜过滤出水作为小球藻培养基,溶液中原生生物少,色度、浊度低;培养微藻无需过多预处理,具有一定优势。

(2) 在 CO₂ 浓度为 7.5%, N/P = 80 的条件下, 小球藻获得最高生物量为 3.38 g·L⁻¹,最高总叶绿 素浓度为 30.78 mg·L⁻¹,氨氮去除率为 68.6%,相 较于 N/P = 10、45, N/P = 80 的条件下不仅有较高的 生物量同时能够减少营养物投入,具有一定经济效 益。

(3) 小球藻在鸡粪沼液中的生长符合修正的 Gompert 模型。小球藻的最大比生长速率随着 CO₂ 浓度的升高而先升高后降低,而较低的氮磷比缩短 了小球藻达到相对最高生长速率所需时间。

(4)小球藻对鸡粪沼液中氮、磷的降解符合一级动力学模型。其中小球藻对氨氮的吸收速率受溶液氮磷比以及 CO₂ 浓度的影响较小,对磷的吸收速率主要受溶液氮磷比的影响且随着氮磷比增加而升

高。

参考文献:

- [1] Cheng F , Jarvis J M , Yu J , et al. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor [J]. Bioresource Technology 2019 294: 122184.
- [2] Riccio G , Lauritano C. Microalgae with Immunomodulatory Activities [J]. Marine Drugs 2020 ,18(1):2.
- [3] Ramaraj S , Jang-Seu K. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries [J]. Marine Drugs , 2018 ,16(1):1856-1865.
- [4] Golueke C G , Oswald W J. Biological Conversion of Light Energy to the Chemical Energy of Methane [J]. Applied Microbiology , 1959 , 7(4): 219.
- [5] Zhou W G, Rongsheng R. Biological mitigation of carbon dioxide via microalgae: Recent development and future direction [J]. entia Sinica 2014 44(1):63 – 78.
- [6] Mousavi S , Najafpour G D , Mohammadi M , et al. Cultiva-

tion of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO_2 fixation , lipid production and wastewater treatment [J]. Bioprocess Biosyst Eng , 2018 A1(4): 1 – 12.

- [7] Nayak M, Karemore A, Sen R. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO₂ biofixation and lipid biosynthesis for biodiesel application [J]. Algal Research 2016 ,16: 216 – 223.
- [8] Ghosh A, Sarkar S, Gayen K et al. Effects of carbon, nitrogen, and phosphorus supplements on growth and biochemical composition of Podohedriella sp. (MCC44) isolated from northeast India [J]. Environmental Progress Sustainable Energy 2020 39(4): e13378.
- [9] 刘锦上,萧铭明,黄翔鹄,等.CO₂体积浓度对酒精废 水培养微藻及其净化效果的影响[J].渔业现代化, 2020 47(02):42-51.
- [10] Liu X , Ying K , Chen G , et al. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide [J]. Chemosphere , 2017: 977.
- [11] Fan J ,Xu H ,Luo Y ,et al. Impacts of CO₂ concentration on growth , lipid accumulation , and carbon-concentratingmechanism-related gene expression in oleaginous Chlorella [J]. Applied Microbiology Biotechnology ,2015 ,99 (5):2451-2462.
- [12] An M, Gao L, Zhao W, et al. Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus [J]. Energies 2020, 13(3):697.
- [13] Li S , Song C , Li M , et al. Effect of different nitrogen ratio on the performance of CO₂ absorption and microalgae conversion (CAMC) hybrid system [J]. Bioresource Technology , 2020 , 306: 123126.
- [14] Krichen E , Rapaport A , Floc H E L , et al. Demonstration of facilitation between microalgae to face environmental stress [J]. Scientific Reports , 2019 , 10(1):1-11.
- [15] Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment [J]. Water Research ,2015 ,77: 98 - 106.
- [16] Xing Y , Guo L , Wang Y , et al. An insight into the phosphorus distribution in extracellular and intracellular cell of Chlorella vulgaris under mixotrophic cultivation [J]. Algal Research 2021 60: 102482.
- [17] Marcilhac C , Sialve B , Pourcher A M , et al. Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate [J]. Bioresource Technology , 2014 , 175: 224 – 230.

- [18] Junzhuo , Liu , Wim , et al. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp. , Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions [J]. Bioresource Technology ,2015 ,179: 234 – 242.
- [19] Rasdi N W , Qin J G. Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea [J]. Journal of Applied Phycology , 2015 , 27(6):2221-2230.
- [20] 蔡敬,赵陆敏,黄旭雄,等.不同氮磷比条件下绿球 藻对猪场污水的净化效率[J].环境科学学报,2017, 37(010):3696-3701.
- [21] Mayers J J ,Flynn K J , Shields R J. Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp [J]. Bioresource technology ,2014 , 169: 588 – 95.
- [22] 国家环境保护总局水和废水监测分析方法编委会.水 和废水监测分析方法[M].北京:中国环境科学出版 社 2002.
- [23] 王学奎. 植物生理生化实验原理和技术 [M]. 北京: 高 等教育出版社 2006.
- [24] Rude K , Yothers C , Barzee T J , et al. Growth potential of microalgae on ammonia-rich anaerobic digester effluent for wastewater remediation [J]. Algal Research ,2022 ,62: 102613.
- [25] Gifuni I Olivieri G Pollio A et al. Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation [J]. New Biotechnology, 2018 A1: 46 - 54.
- [26] Li C T , Trigani K , Zuiga C , et al. Examining the impact of carbon dioxide levels and modulation of resulting hydrogen peroxide in Chlorella vulgaris [J]. Algal Research , 2021 60: 102492.
- [27] Dyhrman S T. Nutrients and Their Acquisition: Phosphorus Physiology in Microalgae [J]. Springer International Publishing 2016 6: 155 – 183.
- [28] Solovchenko A, Khozin-Goldberg I, Selyakh I, et al. Phosphorus starvation and luxury uptake in green microal– gae revisited [J]. Algal Research , 2019, 43: 101651.
- [29] Kozowska Szerenos B , Bialuk I , Maleszewski S. Enhancement of photosynthetic O₂ evolution in Chlorella vulgaris under high light and increased CO₂ concentration as a sign of acclimation to phosphate deficiency-ScienceDirect [J]. Plant Physiology and Biochemistry , 2004 , 42 (5): 403 - 409.

- [30] Sousa C A , Sousa H , Vale F , et al. Microalgae-based bioremediation of wastewaters-Influencing parameters and mathematical growth modelling [J]. Chemical Engineering Journal , 2021 , 425: 131412.
- [31] Jiang R , Qin L , Feng S , et al. The joint effect of ammonium and pH on the growth of Chlorella vulgaris and ammonium removal in artificial liquid digestate [J]. Bioresource Technology , 2021 , 325(1): 124690.
- [32] Khanzada Z T. Phosphorus Removal from Landfill Leachate by Microalgae [J]. Biotechnology Reports, 2020, 25: e00419.
- [33] Wu Y H , Yin Y , Li X , et al. Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition [J]. Bioresource Technology , 2012 , 112(none): 193 – 8.
- [34] Taufikurahman T , Suyono E A , Ardiansyah M A , et al. Cultivation of Chlorella vulgaris in Anaerobically Digested Dairy Manure Wastewater (ADDMW) for Protein and Chlorophyll Production [J]. Sains Malaysiana , 2020 , 49

(9): 2035 - 42.

- [35] 王昭玉,王江涛.7种海洋微藻叶绿素荧光对 N,P 限制的响应[J].海洋环境科学 2013,32(2):6.
- [36] Rocha, Giseli, Swerts, et al. Biochemical and physiological responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus concentrations [J]. Journal of Applied Phycology, 2018, 30 (4): 2167 – 2177.
- [37] Luo L Z , Shao Y , Luo S , et al. Nutrient removal from piggery wastewater by Desmodesmus sp. CHX1 and its cultivation conditions optimization [J]. Environmental Technology , 2019 A0(21): 2739 - 3746.
- [38] Xu P , Ma W , Han H , et al. Biodegradation and Interaction of Quinoline and Glucose in Dual Substrates System [J]. Bulletin of Environmental Contamination Toxicology , 2015 , 94(3): 365 - 369.
- [39] Ala B , Lm A , Tj A. Microalgae starvation for enhanced phosphorus uptake from municipal wastewater [J]. Algal Research , 2020 52: 102090.